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Abstract

We use the Abelian reduction of the Wess–Zumino–Witten theory to perform
the functional integral bosonization of the two-dimensional fermion model
with Thirring interaction among N different massive Fermi field species. The
operator solution for the quantum equations of motion is reconstructed from the
functional integral formulation. The fermion–boson correspondences, obtained
earlier by Halpern, are generalized to the case of quartic interaction between
different Fermi field species. For the massless model, the general Wightman
functions of the Fermi field are displayed. The partition function and the
equation of state of the statistical mechanical system associated with the
effective bosonized theory are obtained. The charge screening mechanism
for the Thirring field is discussed by considering the model with local gauge
symmetry. The present approach provides a general guideline in order to obtain
the operator solution of two-dimensional Abelian models, since we only need
to know the free-field fermion–boson correspondences in order to reconstruct
from the functional integral formulation the operator solution for the quantum
equations of motion.

PACS numbers: 03.70.+k, 11.10.Kk, 12.90.+b

1. Introduction

The bosonization of fermions, within the operator and functional integral approaches, has
proven in the past to be a very useful technique for solving quantum field theoretical models
in 1 + 1 dimensions [1].

In the efforts toward the extension of the bosonization procedure to 2 + 1 dimensions
[2], and from the functional integral point of view, use has been made of an interpolating
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field procedure that leads to a mapping of the partition function of the original theory into a
partition function of Chern–Simons-type theories. This same procedure has also been applied
to discuss two-dimensional models [3–8]. However, the procedure of using auxiliary vector
fields in order to decouple the Fermi fields, enlarges the field algebra and introduces redundant
‘decoupled’ Bose fields, in such a way that the Bose field algebra contains more degrees of
freedom than those needed for the description of the physical content of the model. The
structural aspects related to the appearance of decoupled massless Bose fields in the functional
integral bosonization have not been fully appreciated and clarified in the literature. From our
point of view, and within the functional integral approach, the equivalence between the two
models should be established on the generating functional level, from which the Hilbert space
of states is constructed.

In [9], the structural aspects of the functional integral bosonization of the massive Thirring
model [10] have been analyzed. Using a synthesis of the functional integral and operator
approaches and by considering the Abelian reduction of the Wess–Zumino–Witten theory
(WZW) [11], Coleman’s proof [12] of the fermion–boson mapping between the massive
Thirring and the sine-Gordon theories is reconstructed in the Hilbert space of states.

The main aim of the present paper is to apply the synthesis of the functional integral and
operator approaches presented in [9] to a generalized model involving the Thirring interaction
among N different Fermi field species, in which we have a more complex Hilbert space
structure than that of the standard Thirring model. This will enable the present work to fill a
gap and clarify some structural aspects which remain obscure in the literature.

The functional integral bosonization of the two-dimensional fermion model with quartic
interaction among different Fermi field species was discussed in [3, 4] on the partition function
level. In [13] the particular case of the model with two fermion species is considered through
the functional integral framework. Using the Abelian reduction of the Wess–Zumino–Witten
theory the bosonized generating functional of the model is obtained and the fermion–boson
mapping is established in the Hilbert space of states.

In this paper, we shall present a detailed study of the two-dimensional fermion model with
quartic interaction among N different fermion species. The use of auxiliary vector fields in the
bosonization procedure introduces redundant Bose fields. This leads to a structural problem
concerning the construction of the true Hilbert space of states of the bosonized theory which
is isomorphic to that of the original fermionic model. It is a common practice to discard these
‘decoupled’ massless scalar fields through the bosonization of the partition function [3, 4, 6].
From the mathematical point of view this is not a satisfactory procedure, and as stressed in
[14–16], in some cases this procedure can lead to misleading conclusions on the physical
content of the model. As we shall see, by performing the functional integral bosonization on
the generating functional level, only zero norm combinations of these fields appear and they
do not contribute to the Wightman functions of the Fermi field operator. Since these redundant
field operators carry neither fermionic charge nor chirality, they reduce to the identity in the
Hilbert space of states. This is a structural question which has not been fully appreciated and
remains obscure in the literature on the functional integral bosonization of models in 1 + 1 and
2 + 1 dimensions.

From the operator point of view, a gap should be filled by providing the operator solution
for the quantum equations of motion. Within the present approach, the operator solution is
reconstructed from the functional integral formulation. The fermion–boson correspondences,
early obtained by Halpern [17] for the case of the baryon-number current–current interaction,
are generalized to the case of quartic interaction between different Fermi field species.

To emphasize the usefulness of the present functional integral approach for handling a
large class of two-dimensional quantum field-theoretic models, we also consider the model
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with local U(1) gauge symmetry and discuss the charge screening mechanism of the Thirring
field. This streamlines the presentations of [18, 19] to the case of N flavored massive Fermi
fields with quartic interaction among different fermion species.

To conclude the analysis of the model we also consider the statistical mechanical system
associated with the effective bosonized Lagrangian. As is well known, Coleman’s equivalence
[12, 20] between the massive Thirring model and the sine-Gordon theory holds for the sine-
Gordon parameter β2 < 8π . Within the statistical mechanical point of view, this can be
related to the fact that the equation of state of the associated statistical mechanical system
of the sine-Gordon model [21] exhibits a Kosterlitz–Thouless (K–T) phase transition [22] at
β2 = 8π . In this paper we show how this phenomenon occurs in the massive fermion model
with quartic interaction among N different fermion species, in which the partition function is
given in terms of a ‘multi-gas’ expansion.

The paper is organized as follows: in section 2 we present general aspects of the model.
In section 3, we use the Abelian reduction of the WZW theory [11] to obtain the generating
functional in terms of the effective bosonized Lagrangian. In section 4, the operator solution
for the quantum equations of motion is obtained and the Hilbert space structure is discussed.
The fermion–boson correspondences, obtained earlier in Halpern’s paper [17], are generalized
to the case of quartic interaction between N different Fermi field species. In section 5 we
discuss the model with local gauge symmetry, i.e., the QED2 with N flavored massive Fermi
fields with quartic interaction among different fermion species. The charge and chirality of the
Thirring field are screened and carried by ‘constant unitary operators’ which generalize those
obtained by Lowenstein and Swieca for the QED2 [18]. The physical content of the model is
described by N − 1 sine-Gordon fields coupled to a massive sine-Gordon field with mass

m2 = e2N

π

(
1 − g2

π
(N − 1)

)−1

.

In section 6, we consider the statistical mechanical system associated with the effective
bosonized theory. The corresponding equation of state is obtained and exhibits a K–T phase
transition at the critical dimension Dc = 2. The concluding remarks are presented in section 7.
In appendix A the exact general Wightman functions of the model with massless fermions are
presented. Some details of the computations of sections 5 and 6 are presented in appendices
B and C. In appendix D, we discuss the problem of the regularization prescription in the
controversial case with N = 2 and present our criticism with respect to the conclusions of [3].

2. General aspects

The model is defined by the classical Lagrangian3,

L(x) =
N∑

j=1

ψ̄j (x)(iγ μ∂μ − mo)ψj (x) + g2
N∑

j<k

(ψ̄j (x)γ μψj (x))(ψ̄k(x)γμψk(x)), (2.1)

3 The conventions used are

γ 0 =
(

0 1
1 0

)
, γ 1 =

(
0 1

−1 0

)
, γ 5 = γ 0γ 1, γ μγ 5 = −εμνγν,

g00 = −g11 = 1, ε01 = 1

∂μ = ∂

∂xμ
, ∂± = ∂0 ± ∂1 = ∂∓, (∂μφ)2 ≡ ∂μφ∂μφ.
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where j and k denote the fermion species. Defining the vector currents

J μ

j = ψ̄j γ
μψj , (2.2)

the current–current interaction among different fermion species in the Lagrangian (2.1) can
be written as

LI = 1

2
g2

⎛⎝ N∑
j=1

J μ

j

⎞⎠2

− 1

2
g2

N∑
j=i

(
J μ

j

)2
, (2.3)

where the U(1) current Jμ is defined by

J μ = 1√
N

N∑
j=1

J μ

j . (2.4)

The first term in the interaction Lagrangian (2.3) corresponds to a repulsive quartic-self-
interaction for the U(1) current and the second term corresponds to N independent attractive
Thirring interactions for each species of currents J μ

j . The classical equations of motion are
given by

iγ μ∂μψj = −g2

(
N∑

k=1

J μ

k

)
γμψj + g2J μ

j γμψj + moψj . (2.5)

In two dimensions the conserved vector current can be written in terms of the pseudo-scalar
potential φ̃j as

J μ

j = εμν∂νφ̃j . (2.6)

Introducing the decomposition [1, 19]

φ̃j = 1√
N

φ̃ +
N−1∑
iD=1

λ
iD
jj φ̃iD , (2.7)

where λiD are the (N − 1) mutually commuting generators of SU(N) with normalization

tr(λiDλjD ) = δij , (2.8)

N−1∑
iD=1

λ
iD
jjλ

iD
kk =

(
δjk − 1

N

)
, (2.9)

the currents (2.6) can be written as

J μ

j = 1√
N

J μ +
N−1∑
iD=1

λ
iD
jjJ

μ

iD
, (2.10)

and the classical equation of motion (2.5) is given by

iγ μ∂μψj = −g2 (N − 1)√
N

J μγμψj + g2
N−1∑
iD=1

λ
iD
jjJ

μ

iD
γμψj + moψj . (2.11)

In the following sections, we shall use the functional integral bosonization in order to obtain
the operator solution for the quantum version of the equation of motion (2.11).

For N = 2 the model exhibits a symmetry under the particle exchange ψ1 ↔ ψ2. In this
case we can define the currents

J μ
± = 1√

2

(
J μ

1 ± J μ

2

)
, (2.12)
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and the interaction Lagrangian (2.3) can be rewritten as

LI = 1
2g2(J μ

+

)2 − 1
2g2(J μ

−
)2

. (2.13)

The symmetry operation ψ1 ↔ ψ2 corresponds to J μ
± ↔ ±J μ

± . As shown in [13] this
symmetry is exhibited by the quantum theory in the physical range of the coupling constant
for which g2 < π .

The field algebra of the massless Thirring model (mo = 0) is isomorphic to the algebra
of the massless scalar field. For massless Fermi fields the model described by the Lagrangian
(2.1) is a scale invariant theory with anomalous scale dimension. As in the standard Thirring
model, in order for the theory described by the Lagrangian (2.1) to have the model with
massless fermions as the short distance fixed point, the scale dimension of the mass operator
must be [20]

D < 2. (2.14)

In what follows the mass term should be understood as a perturbation in the scale invariant
model.

3. Functional integral bosonization

In order to perform the functional integral bosonization of the model, we shall consider the
generating functional and the functional integral identities

ei
∫

d2x{ 1
2 g2(

∑N
i=1 J

μ

i )2} ≡
∫

Daμ ei
∫

d2x{− 1
2 g2(aμ)2+g2aμ(

∑N
j=1 J

μ

j )}, (3.1)

ei
∫

d2x{− 1
2 g2∑N

j=1(J
μ

j )2} ≡
∫ N∏

j=1

Db
μ

j ei
∫

d2x{ 1
2 g2∑N

j=1(bμj
)2+g2∑N

j=1 b
μ

j Jμj }. (3.2)

This procedure enlarges the original field algebra by the introduction of two auxiliary vector
fields (aμ, bμ) and the generating functional is given in terms of the functional integral measure

N∏
j=1

Dψ̄jDψj →
⎛⎝ N∏

j=1

Dψ̄jDψj

⎞⎠Daμ

⎛⎝ N∏
j=1

Dbμj

⎞⎠ . (3.3)

The effective Lagrangian is given by

Leff =
N∑

j=1

ψ̄j (iγ
μ∂μ − mo)ψj − g2

2
(aμ)2 + g2aμ

⎛⎝ N∑
j=1

J μ

j

⎞⎠ +
g2

2

N∑
j=1

(
b

μ

j

)2
+ g2

N∑
j=1

b
μ

j Jμj .

(3.4)

Defining N new vector fields

Bμ

j = b
μ

j + aμ, (3.5)

we obtain from (3.4)

Leff =
N∑

j=1

ψ̄j (iγ
μ∂μ + g2γ μBμj − mo)ψj

+
g2

2

N∑
j=1

(
Bμ

j

)2
+

g2

2
(N − 1)(aμ)2 − g2aμ

⎛⎝ N∑
j=1

Bμ

j

⎞⎠ . (3.6)
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Performing the functional integration over the field aμ, the effective Lagrangian is given by

Leff =
N∑

j=1

ψ̄j (iγ
μ∂μ + g2γ μBμj − mo)ψj +

g2

2

N∑
j=1

(
Bμ

j

)2 − 1

2

g2

(N − 1)

⎛⎝ N∑
j=1

Bμ

j

⎞⎠2

. (3.7)

Introducing the vector field combinations

Bj
± = Bj

0 ± Bj

1 , (3.8)

the fermionic piece of the Lagrangian can be written in terms of the two spinor components
ψ(α)j (α = 1, 2) as follows (∂± = ∂0 ± ∂1):

LF =
N∑

j=1

{
ψ

†
(1)j

(
i∂− + g2Bj

−
)
ψ(1)j + ψ

†
(2)j

(
i∂+ + g2Bj

+
)
ψ(2)j − mo

(
ψ

†
(1)jψ(2)j + ψ

†
(2)j

)
ψ(1)j

}
.

(3.9)

In order to decouple the Fermi fields and the auxiliary vector fields in the Lagrangian (3.9),
we introduce the parametrization of the fields Bj

± in terms of the U(1) group-valued variables
(Uj , Vj ) as

Bj
+ = 1

g2
U−1

j i∂+Uj , Bj
− = 1

g2
Vj i∂−V −1

j , (3.10)

such that

ψ
†
(1)j

(
i∂− + g2Bj

−
)
ψ(1)j + ψ

†
(2)j

(
i∂+ + g2Bj

+
)
ψ(2)j

= (ψ(1)jV
−1
j

)†
i∂−
(
V −1

j ψ(1)j

)
+ (ψ(2)jUj )

†i∂+(Ujψ(2)j ). (3.11)

The decoupling is achieved by performing the chiral rotations

ψ(1)j = Vjψ
(0)

(1)j , ψ(2)j = U−1
j ψ

(0)

(2)j , (3.12)

where ψ
(0)
j is the solution of the free massive Fermi theory with N species. Defining the

covariant derivatives

D±(Bj ) = i∂± + g2Bj
±, (3.13)

and introducing in the functional integral the 2N identities

1 =
∫

DUj [det D+(Uj )]δ
(
g2Bj

+ − U−1
j i∂+Uj

)
, (3.14)

1 =
∫

DVj [det D−(Vj )]δ
(
g2Bj

− − Vj i∂−V −1
j

)
, (3.15)

the change of variables from
(
Bj

+,Bj
−
)

to (Uj , Vj ) is performed by integration over the fields

Bj
±. Performing the fermion chiral rotations (3.12) and taking into account the corresponding

change in the integration measure [9, 23], we obtain⎛⎝∏
j

Dψ̄jDψj

⎞⎠⎛⎝∏
j

DBj
±

⎞⎠ =
⎛⎝∏

j

Dψ̄
(0)
j Dψ

(0)
j

⎞⎠⎛⎝∏
j

DUjDVj

⎞⎠∏
j

Wj [Uj , Vj ],

(3.16)

with

Wj [Uj , Vj ] = e−i{[Uj ]+[Vj ]−b
∫

d2x Bj
+Bj

−}, (3.17)

6
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where b is a regularization parameter and [Gj ] is the Wess–Zumino–Witten (WZW)
functional [9, 11], which enters in (3.17) with a negative level. In the Abelian case the
WZW functional is given by

[G] = [G−1] = 1

8π

∫
d2z ∂μG−1∂μG. (3.18)

Due to the absence of local gauge invariance in the total effective theory, the last term in (3.17)
has been added by exploiting the regularization freedom in the computation of the Jacobians.
Since the effective fermionic Lagrangian is invariant under local gauge transformations we
shall use the ‘gauge invariant’ regularization by setting4

b = g2

4π
. (3.19)

Using the Polyakov–Wiegman identity [24]

[UV ] = [U ] + [V ] +
1

4π

∫
d2x(U−1∂+U)(V ∂−V −1), (3.20)

we obtain5

Wj = e−i[Uj Vj ]. (3.21)

The vector fields in two dimensions can be decomposed as

Bμ

j = 1

g2
(εμν∂νφ̃j + ∂μζj ), (3.22)

which corresponds to parametrizing the variables (Uj , Vj ) as follows:

Uj = e−i(φ̃j +ζj ), Vj = e−i(φ̃j −ζj ), (3.23)

and the Fermi fields are given by

ψj(x) = ei(γ 5φ̃j (x)+ζj (x))ψ
(0)
j (x). (3.24)

Taking all this into account, the total effective Lagrangian is given by

Leff =
N∑
j

{
ψ̄

(0)
j iγ μ∂μψ

(0)
j − mo

(
ψ

(0)†
(1)jψ

(0)

(2)j e−2iφ̃j + ψ
(0)†
(2)jψ

(0)

(1)j e2iφ̃j
)

− 1

2g2

(
1 +

g2

π

)
(∂μφ̃j )

2 +
1

2g2
(∂μζj )

2

}

− 1

2

1

g2(N − 1)

⎛⎝ N∑
j=1

(εμν∂νφ̃j + ∂μζj )

⎞⎠2

. (3.25)

Let us introduce the free-field bosonization expressions [1]

ψ
(0)
j (x) =

(
μ2d

o

2π

) 1
2

e−i 1
4 πγ 5

: ei
√

π{γ 5ϕ̃j (x)+
∫∞
x1 ∂0ϕ̃j (x

0,z1)dz1}:, (3.26)

ψ̄
(0)
j γ μ∂μψ

(0)
j = 1

2
: (∂μϕ̃j )

2:, (3.27)

4 A different choice of regularization implies a redefinition of the β parameter of the sine-Gordon theory and the
physical range for the coupling constant g [9, 13].
5 The Jacobian (3.21) is invariant under the Abelian ‘gauge transformation’ gU = gU,g V = V g−1.

7
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ψ
(0)†

(1)jψ
(0)

(2)j = μo

2π
: e−2i

√
πϕ̃j :, (3.28)

where :(•): indicates normal ordering with respect to the free propagator
(
� + μ2

o

)−1
in the

limit μo → 0 and d is the scale dimension of the Fermi field operator (the canonical dimension
is d = 1/2).6 Introducing the fields

φ̃ = 1√
N

N∑
j=1

φ̃j , ζ = 1√
N

N∑
j=1

ζj , (3.29)

the generating functional is given in terms of the bosonized effective Lagrangian

Leff =
N∑

j=1

{
1

2
(∂μϕ̃j )

2 − 1

2g2

(
1 +

g2

π

)
(∂μφ̃j )

2 +
1

2g2
(∂μζj )

2 − m′
o cos(2

√
πϕ̃j + 2φ̃j )

}
+

1

2

N

g2(N − 1)
(∂μφ̃)2 − 1

2

N

g2(N − 1)
(∂μζ )2, (3.30)

where m′
o = μomo/π . Using the decomposition (2.7) and the same for the fields ϕ̃j and ζj ,

ϕ̃j = 1√
N

ϕ̃ +
N−1∑
iD=1

λ
iD
jj ϕ̃iD , (3.31)

ζj = 1√
N

ζ +
N−1∑
iD=1

λ
iD
jj ζiD , (3.32)

the total bosonized effective Lagrangian can be rewritten as

Leff = 1

2
(∂μϕ̃)2 +

1

2

N−1∑
iD=1

(
∂μϕ̃iD

)2
+

1

2g2(N − 1)

(
1 − g2(N − 1)

π

)
(∂μφ̃)2

− 1

2g2

(
1 +

g2

π

) N−1∑
iD=1

(
∂μφ̃iD

)2 − 1

2

1

g2(N − 1)
(∂μζ )2 +

1

2g2

N−1∑
iD=1

(
∂μζiD

)2
−m′

o

N∑
j=1

cos

{
2

√
π

N
ϕ̃ +

2√
N

φ̃ +
N−1∑
iD=1

λ
iD
jj (2

√
πϕ̃iD + 2φ̃iD )

}
. (3.33)

Note that the range for the values of the coupling constant g2 in (3.33) determines the sign for
the metric of the field φ̃. As in the standard Thirring model, we shall consider

0 � g2 < π/(N − 1). (3.34)

In order to have canonical fields we perform the field scaling

φ̃ = g
√

(N − 1)√
1 − g2(N−1)

π

φ̃′, (3.35)

φ̃iD = g√
1 + g2

π

φ̃′
iD

, (3.36)

ζ = g
√

(N − 1)ζ ′, (3.37)

6 For a detailed discussion of the meaning of :(•): in an interacting theory we refer the reader to [1, 20].
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ζiD = gζ ′
iD

, (3.38)

and the Lagrangian (3.33) can be written as

Leff = 1

2
(∂μϕ̃)2 +

1

2

N−1∑
iD=1

(
∂μϕ̃iD

)2
+

1

2
(∂μφ̃′)2 − 1

2

N−1∑
iD=1

(∂μφ̃′
iD

)2 − 1

2
(∂μζ ′)2 +

1

2

N−1∑
iD=1

(
∂μζ ′

iD

)2
− m′

o

N∑
j=1

cos

⎧⎨⎩2

√
π

N
ϕ̃ +

2√
N

g
√

(N − 1)√
1 − g2(N−1)

π

φ̃′ +
N−1∑
iD=1

λ
iD
jj

⎛⎝2
√

πϕ̃iD + 2
g√

1 + g2

π

φ̃′
iD

⎞⎠⎫⎬⎭.

(3.39)

Note that the fields
(
φ̃′

iD
, ζ ′) are quantized with negative metric. The fields (̃ϕ, φ̃′) act as

pseudo-potentials for the U(1) current Jμ and the fields
(̃
ϕiD , φ̃′

iD

)
act as pseudo-potentials

for the current J μ

iD
. Taking into account the combination between the fields (̃ϕ, φ̃′), as well as

the combination between the fields (̃ϕiD , φ̃′
iD

) appearing in the mass term in (3.39), following
the procedure introduced in [9, 13] we shall perform canonical field transformations. For the
fields (̃ϕ, φ̃′), both quantized with positive metric, we introduce the canonical transformation

β�̃ = 2

√
π

N
ϕ̃ +

2√
N

g
√

(N − 1)√
1 − g2(N−1)

π

φ̃′, (3.40)

βξ̃ = 2√
N

g
√

(N − 1)√
1 − g2(N−1)

π

ϕ̃ − 2

√
π

N
φ̃′, (3.41)

with

β2 = 4π

N

1

1 − g2

π
(N − 1)

. (3.42)

Both fields �̃ and ξ̃ have positive metric. For the fields
(̃
ϕiD , φ̃′

iD

)
, which have opposite metric,

we introduce the transformation

γ �̃iD = 2
√

πϕ̃iD + 2
g√

1 + g2

π

φ̃′
iD

, (3.43)

γ ξ̃iD = 2
g√

1 + g2

π

ϕ̃iD + 2
√

πφ̃′
iD

, (3.44)

with

γ 2 = 4π

1 + g2

π

, (3.45)

and the fields �̃iD and ξ̃iD have opposite metric. The bosonized effective Lagrangian (3.39) is
then given by

Leff = δLo + L
[
�̃, �̃iD

]
, (3.46)

where δLo is the Lagrangian piece of the free massless scalar fields with opposite metric
quantization,

δLo = −1

2
(∂μζ ′)2 +

1

2
(∂μξ̃ )2 +

1

2

N−1∑
iD=1

(
∂μζiD

)2 − 1

2

N−1∑
iD=1

(
∂μξ̃iD

)2
, (3.47)
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and

L
[
�̃, �̃iD

] = 1

2
(∂μ�̃)2 +

1

2

N−1∑
iD=1

(
∂μ�̃iD

)2 − m′
o

N∑
j=1

cos

(
β�̃ + γ

N−1∑
iD=1

λ
iD
jj �̃iD

)
. (3.48)

The scale dimension of the mass operator in (3.48) is given by

D = 1

4π

(
β2 + γ 2 (N − 1)

N

)
. (3.49)

Note that the N fields (�̃, �̃iD ), which describe the physical content of the bosonized effective
theory, have positive metric and the unitarity is not spoiled. It should be stressed that although
the free and massless fields ζ ′, ξ̃ , ζiD and ξ̃iD decouple in the Lagrangian, they do not decouple
in the generating functional. As a matter of fact, these fields quantized with opposite metric are
redundant bosonic degrees of freedom introduced by the use of auxiliary vector fields [9]. As
we shall see, in the generating functional only zero norm combinations of these fields appear
and they do not contribute to the Wightman functions of the Fermi field operator. As shown
in [9], the factorization of the partition function will generally lead to incorrect conclusions
concerning the physical content of the model.

For g = 0, β2 = 4π/N, γ 2 = 4π , defining N bosonic fields

�̃j
.= 1√

N
�̃ +

N−1∑
iD=1

λ
iD
jj �̃iD , (3.50)

the Lagrangian (3.48) can be rewritten as

L(0) = 1

2

N∑
j=1

(∂μ�̃j )
2 − m′

o

N∑
j=1

cos(2
√

π�̃j ), (3.51)

which corresponds to the bosonized Lagrangian of N free massive Fermi fields.
The bosonized Fermi-mass term in the Lagrangian (3.48) is the generalization to the case

of interaction among different fermion species of the bosonized mass operator obtained by
Halpern [17] for the case of the ‘baryon-number current–current interaction’ g2

(∑N
j=1 J

μ

j

)2
.

For N = 2, defining the fields �̃+ ≡ �̃ and �̃− ≡ �̃iD , the Lagrangian (3.48) can be
rewritten as

L[�̃+, �̃−] = 1
2 (∂μ�̃+)

2 + 1
2 (∂μ�̃−)2 − m′

o cos(β+�̃+) cos(β−�̃−), (3.52)

where

β2
+ = 2π

1 − g2

π

, β2
− = 2π

1 + g2

π

. (3.53)

In the bosonized theory, the symmetry under the particle exchange ψ1 ↔ ψ2 corresponds to
�̃± → ±�̃±. The fields �̃± are sine-Gordon fields for all values of the coupling constant

g2 <
π√

2
, (3.54)

for which D < 2 and the model is well defined in the sense of a perturbation theory around
the scale invariant fixed point.
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4. Operator solution and Hilbert space

Now, we are in order to reconstruct from the functional integral bosonization the operator
solution for the quantum equations of motion. To begin with, let us consider the vector fields
(3.22) which can be written as

Bμ

j = Bμ +
∑
iD

λ
iD
jjB

μ

iD
. (4.1)

In the same way as in the standard Thirring model [9], the auxiliary vector fields are
related to the vector currents. Performing the field scaling (3.35)–(3.38) and the canonical
transformations (3.40)–(3.44), we obtain

Bμ = −(N − 1)J μ + �μ, (4.2)

Bμ

iD
= J μ

iD
+ �

μ

iD
, (4.3)

where the currents are given by

J μ = − β

2π
εμν∂ν�̃, (4.4)

J μ

iD
= − γ

2π
εμν∂ν�̃iD . (4.5)

Due to the opposite metric for the free massless fields, the currents

�μ = 1

g

√
N − 1

N
∂μ(ζ ′ − ξ) = ∂μ�, (4.6)

�
μ

iD
= 1

g
∂μ(ζ ′

iD
+ ξiD ) = ∂μ�iD , (4.7)

are longitudinal currents of zero norm

〈0|�μ(x)�ν(y)|0〉 = 0 ∀ (x, y), (4.8)

〈0|�μ

iD
(x)�ν

iD
(y)|0〉 = 0 ∀ (x, y). (4.9)

Following the same procedure, the Fermi field operators (3.24) can be written in terms of
Mandelstam operators [25] as follows:

ψj(x) =
(

�(x)

N−1∏
iD=1

�
iD
j (x)

)(
ω(x)

N−1∏
iD=1

ω
iD
j (x)

)
, (4.10)

where

�(x) =
(

μ2d
o

2π

) 1
2

: ei( β

2 γ 5�̃(x)+ 2π
Nβ

∫∞
x1 ∂0�̃(x0,z1)dz1)

:, (4.11)

�
iD
j (x) = : eiλ

iD
jj (

γ

2 γ 5�̃iD
(x)+ 2π

γ

∫∞
x1 ∂0�̃iD

(x0,z1)dz1)
:, (4.12)

ω(x) = : eig
√

N−1
N (ζ ′(x)−ξ(x)):, (4.13)

ω
iD
j (x) = : eigλ

iD
jj (ζ ′

iD
(x)+ξiD

(x))
:. (4.14)
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The field operators (4.11) and (4.12) generalize those expressions obtained by Halpern in [17]
in the case of the baryon-number current–current interaction with N = 2.

Within the functional integral formulation, the Hilbert space of states is constructed from
the generating functional

Z
[
θ1, . . . , θN , θ̄1, . . . , θ̄N

] =
∫ N∏

j=1

Dψ̄jDψj ei
∫

d2z{L+
∑N

j=1(θ̄j ψj +ψ̄j θj )}, (4.15)

whose bosonized form is given by

Z
[
θ1, . . . , θN , θ̄1, . . . , θ̄N

] = 〈ei
∫

d2z{∑N
j=1 θ̄j (�(z)

∏
iD

�
iD
j (z)ω(z)

∏
iD

ω
iD
j (z))+h.c.}〉

, (4.16)

where the average is taken with respect to the functional measure

dμ = Dξ̃ eiS(0) (̃ξ )Dζ ′ e−iS(0)(ζ ′)
N−1∏
iD=1

Dξ̃iD e−iS(0) (̃ξiD
)

N−1∏
iD=1

DζiD eiS(0)(ζiD
)D�̃

N−1∏
iD=1

D�̃iD eiS(�̃,�̃iD
).

(4.17)

From the generating functional (4.16) we obtain the general 2n-point functions, as for instance

〈ψ̄j (x1) · · · ψ̄j (xn)ψj (y1) · · · ψj(yn)〉 = 〈0|�̄(x1)
∏
iD

�̄
iD
j (x1) · · · �̄(xn)

∏
iD

�̄
iD
j (xn)�(y1)

×
∏
iD

�
iD
j (y1) · · · �(yn)

∏
iD

�
iD
j (yn)|0〉〈0|ω∗(x1)

∏
iD

ω
iD∗
j (x1) · · · ω∗(xn)

×
∏
iD

ω
iD∗
j (xn)ω(y1)

∏
iD

ω
iD
j (y1) · · · ω(yn)

∏
iD

ω
iD
j (yn)|0〉o, (4.18)

where the notation 〈0| • |0〉 means average with respect to the coupled sine-Gordon theories
and 〈0| • |0〉o means average with respect to the free massless theories. Due to the opposite
metric quantization for the free massless fields, the operators ω and ω

iD
j generate constant

Wightman functions

〈0|ω∗(x1) · · · ω∗(xn)ω(y1) · · · ω(yn)|0〉o = 1, (4.19)

〈0|ωiD∗
j (x1) · · · ωiD∗

j (xn)ω
iD
j (y1) · · · ωiD

j (yn)|0〉o = 1. (4.20)

The cluster decomposition is not violated, since the operators ω and ω
iD
j carry neither fermionic

charge nor chirality selection rules. The operators ω and ω
iD
j commute with all operators

defining the field algebra and thus reduce to the identity in the Hilbert space of states.
Following [13], the states in the positive semi-definite Hilbert space H can be accommodated
as equivalent classes modulo �μ|0〉 and �iD

μ |0〉, in such a way that the positive-definite metric
Hilbert space H′ of the model is a proper subspace of H and is given by the coset

H′ = H
ho

, (4.21)

where ho is the zero norm Hilbert subspace generated by the longitudinal currents �μ and �iD
μ .

The Fermi field (4.10) satisfies the quantum version of the equation of motion (2.5)

iγ μ∂μψj (x) = −g2(N − 1)
...Jμ(x)γ μψj (x)

... + g2
N−1∑
iD=1

λ
iD
jj

...J iD
μ (x)γ μψj (x)

... − Mψj(x),

(4.22)
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where
...(•)

... denotes a suitable defined normal product given by the symmetric limit

...A(x)B(x)
...

.= lim
ε→0

1
2 {A(x + ε)B(x) + A(x − ε)B(x)} , (4.23)

and the currents are given by (4.4) and (4.5). In equation (4.22), M is a constant which is
infinite, where the scale dimension of the mass operator (3.49) is greater than zero; finite,
where it is equal to zero; or zero, where that scale is less than one [1, 26]. For g = 0 we obtain
the canonical value D = 1 .

For g = 0 and using (3.50), the operator solutions (4.10) correspond to the Mandelstam
soliton operators describing N free massive Fermi fields

�j(x) ≡ �
(0)
j =

(μo

2π

) 1
2

: ei
√

2π(γ 5�̃j (x)+
∫∞
x1 ∂0�̃j (x

0,z1)dz1):. (4.24)

The exact general Wightman functions of the model with massless fermions are presented in
appendix A.

5. Local gauge symmetry

In this section we shall consider the model with local U(1) gauge symmetry. This will
enable us to have a clear understanding of the mathematical criteria within the functional
integral bosonization framework, in order to deal with ‘decoupled’ free massless fields when
constructing the physical Hilbert subspace of states in the case of a more complex situation.

To begin with, let us consider QED2 with N flavored Fermi fields with quartic interaction
among different fermion species, which is defined by the Lagrangian

L(x) = −1

4
(Fμν)

2 +
N∑

j=1

ψ̄j (x)(iγ μ∂μ + eγ μAμ − mo)ψj (x)

+ g2
N∑

j<k

(ψ̄j (x)γ μψj (x))(ψ̄k(x)γμψk(x)), (5.1)

where the field-strength tensor is given by

Fμν = ∂νAμ − ∂μAν . (5.2)

Following the same procedure as in section 3, after decoupling the quartic interactions, the
Lagrangian (5.1) can be written as

L(x) = −1

4
(Fμν)

2 +
N∑

j=1

ψ̄j (x)(iγ μ∂μ + γ μ(g2Bμ + eAμ) − mo)ψj (x)

+
g2

2

N∑
j=1

(
Bμ

j

)2 − 1

2

g2

(N − 1)

⎛⎝ N∑
j=1

Bμ

j

⎞⎠2

. (5.3)

In order to decouple the Fermi fields and the vector fieldsBμ andAμ in the effective Lagrangian,
we shall use the parametrization (3.10) for the fields Bj

± and the fields A± are parametrized as

A+ = 1

e
U−1

g i∂+Ug, A− = 1

e
Vgi∂−V −1

g . (5.4)

The label ‘g’ characterizes the fields associated with the gauge degrees of freedom. The
decoupling is achieved by performing the simultaneous fermion rotations

ψ(1)j = VjVgψ
(0)

(1)j , ψ(2)j = U−1
j U−1

g ψ
(0)

(2)j . (5.5)
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The effective bosonized Lagrangian is given by (for details see appendix B)

Leff = δLo + L̂, (5.6)

where

δLo = −1

2
(∂μζ ′)2 +

1

2
(∂μξ̃ )2 +

1

2

N−1∑
iD=1

(
∂μζiD

)2 − 1

2

N−1∑
iD=1

(
∂μξ̃iD

)2
(5.7)

and

L̂ = −1

2
(∂μη̃)2 +

1

2
(∂μ�̃)2 +

1

2

N−1∑
iD=1

(
∂μ�̃iD

)2
+

1

2
(∂μ�̃)2 − 1

2
m2�̃2

−m′
o

N∑
j=1

cos

(
β�̃ + β(�̃ + η̃) + γ

N−1∑
iD=1

λ
iD
jj �̃iD

)
, (5.8)

with

β2 = 4π

N

1

1 − g2

π
(N − 1)

, (5.9)

γ 2 = 4π

1 + g2

π

, (5.10)

and the mass of the ‘physical’ field �̃ is given by

m2 = Ne2

π

1

1 − g2

π
(N − 1)

. (5.11)

5.1. Operator solution, gauge invariant field algebra and Hilbert space hierarchy

Following the same procedure given in section 4, the auxiliary vector field Bμ

j (3.22) and the
gauge field Aμ (4.16) can be written as

Aμ = 1

m
εμν∂

ν(�̃ + η̃), (5.12)

Bμ

j = Bμ +
∑
iD

λ
iD
jjB

μ

iD
, (5.13)

where

Bμ = −(N − 1)J μ + Lμ + �μ, (5.14)

Bμ

iD
= J μ

iD
+ �

μ

iD
, (5.15)

J μ = − β

2π
εμν∂ν�̃, (5.16)

J μ

iD
= − γ

2π
εμν∂ν�̃iD , (5.17)

and the longitudinal currents of zero norm are given by

Lμ = (N − 1)
β

2π
εμν∂

ν (̃η + �̃), (5.18)
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�μ = 1

g

√
N − 1

N
∂μ(ζ ′ − ξ), (5.19)

�
μ

iD
= 1

g
∂μ
(
ξiD + ζ ′

iD

)
. (5.20)

The Fermi field operator is given by (see equation (4.10))

ψj = : eiγ 5 β

2 (�̃+̃η):

(
�(x)

N−1∏
iD=1

�
iD
j (x)

)(
ω(x)

N−1∏
iD=1

ω
iD
j (x)

)
. (5.21)

The gauge non-invariant indefinite-metric Hilbert space H contains zero norm states generated
by the currents �μ, �

μ

iD
and Lμ. The positive-norm Hilbert subspace H′′ is the quotient space

H′′ = H
Ho

, (5.22)

where Ho is the zero norm subspace generated by the currents �μ, �
iD
μj and Lμ. In this subspace

the operators ω and ω
iD
j reduce to the identity.

The gauge invariant field subalgebra is generated by the set of local operators{
J μ,J μ

iD
,Fμν

}
and the bilocals formally defined by

Dj(x, y) ∼ ψ
†
j (x) e−ie

∫ y

x
Aμdzμ

ψj (y). (5.23)

Using the independence of the choice of integration-path (up to a c-number phase) of the
exponential [28, 20, 19], the bilocal operators are given by (up to a normalization factor)

Dj(x, y) = : ei{ β

2 (γ
5
y �̃(y)−γ 5

x �̃(x))− 2π
Nβ

∫ y

x
εμν∂

ν�̃(z)dzμ}
:

×
(

N−1∏
iD=1

: �
iD

∗
j (x)�

iD
j (y):

)
σ ∗(x)σ (y), (5.24)

where

σ(x) = : ei{γ 5 β

2 (�̃(x)+̃η(x))+ 2π
Nβ

∫∞
x

εμν∂
ν (�̃(z)+̃η(z))dzμ}

:. (5.25)

The operator (5.25) is a generalization of the ‘constant unitary operator’ obtained by
Lowenstein and Swieca [18] for QED2. As in the standard QED2 [19, 18], the cluster
decomposition is violated, since the operator σ(α) (α = 1, 2 refers to spinor index) generates
an infinite number of vacua carrying the U(1) charge and chirality of the Thirring Fermi field
� (4.11),

σ
n1
(1)σ

n2
(2)|0〉 = |n1, n2〉. (5.26)

The cluster decomposition is restored by introducing the coherent superposition [18]

|θ1, θ2〉 = 1

2π

∞∑
n1,n2=0

e−in1θ1 e−in2θ2 |n1, n2〉, (5.27)

such that

σ(α)|θ1, θ2〉 = eiθα |θ1, θ2〉. (5.28)

In each one of the irreducible sectors σ(1) and σ(2) are c-numbers

σ ∗
(1)σ(2) = e−i(θ2−θ1), (5.29)
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and the field algebra is isomorphic with the algebra of the sine-Gordon fields �̃ and
�̃iD . Within the functional integral approach, the generating functional of the gauge
invariant Wightman functions is given in terms of the bosonized theory defined by the
Lagrangian

Leff = 1

2

N−1∑
iD=1

(
∂μ�̃iD

)2
+

1

2
(∂μ�̃)2 − 1

2
m2�̃2 − m′

o

N∑
j=1

cos

(
β�̃ + γ

N−1∑
iD=1

λ
iD
jj �̃iD + θ

)
,

(5.30)

where θ = θ2 − θ1 characterizes the explicity chiral symmetry breakdown. For g2 =
0 (β2 = 4π

N
) we recover from (5.21) the operator solution obtained in [19, 1] for QED2

with N flavored Fermi fields, and from (5.30) the corresponding effective bosonized
Lagrangian.

6. Statistical mechanical description

It is well known that in the standard Thirring model the scale dimension of the mass operator
must be D < 2. The same must occur in the theory described by the Lagrangian (2.1) when the
short distance fixed point is defined within the model with massless fermions. In what follows
we shall consider the statistical mechanical system associated with the effective bosonized
theory and show that, analogously to the standard Thirring model, in the present case the
equation of state exhibits a Kosterlitz–Thouless phase transition at the critical dimension
Dc = 2.

In the two-dimensional Euclidean space the partition function is given by (we shall
suppress the ‘tilde’ notation)

Z = 1

Zo

∫
dμo exp

⎧⎨⎩−m′
o

∫
d2z

N∑
j=1

cos

(
β�(z) + γ

∑
iD

λ
iD
jj�iD (z)

)⎫⎬⎭ , (6.1)

where dμo is the free-field (Gaussian) probability measure

dμo = D� e−S(0)(�)

N−1∏
iD=1

D�iD e−S
(0)
iD

(�iD
)
, (6.2)

the S(0)’s are the corresponding free-field Euclidian actions, D� is the formal Lebesgue
measure and

Zo =
∫

dμo. (6.3)

By expanding the exponential of the interaction action in the Gell’Mann–Low formula (6.1)
in a power series of the bare mass m′

o, the interaction term can be treated as a perturbation in
the corresponding free-field theories defined by the actions S(0).

6.1. Partition function

Following the standard procedure [13, 21], expanding the exponentials in (6.1) in powers of
m′

o and performing the functional integration over the fields � and �iD (for more details see
appendix C), we get
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Z = 1

Zo

∞∑
n=0

(−m′
o)

n

2n

∑
m1,m2,...,mN

δn,m1+···+mN

m1!m2! · · · mN !

⎛⎝ N∏
j=1

∫ mj∏
kj =1

d2zkj

⎞⎠
×
∑

{αkj
}mj

exp

⎧⎨⎩−β2

2

N∑
j=1

N∑
j ′=1

mj∑
kj =1

mj ′∑
k̄j ′=1

αkj
αk̄j ′ Do(zkj

− zk̄j ′ )

⎫⎬⎭
× exp

⎧⎨⎩−γ 2

2

N−1∑
iD=1

N∑
j=1

N∑
j ′=1

mj∑
kj =1

mj ′∑
k̄j ′=1

αkj
αk̄j ′ λ

iD
jjλ

iD
j ′j ′Do(zkj

− zk̄j ′ )

⎫⎬⎭ , (6.4)

where αkj
= ±1, the summation

∑
{αkj

}mj
runs over all possibilities in the set {α1, . . . , αmj

},
the summation

∑
m1,m2,...,mN

runs over all positive-integer values of mj for which
N∑

j=1

mj = n, (6.5)

and

Do(z) = lim
μ2→0

�(z;μ) = − 1

4π
ln{−μ2(|z|2 + ε2)} (6.6)

is the infrared and ultraviolet regularized massless Green’s function of the two-dimensional
Laplacian operator. We carry out the calculations in the presence of μ2 and set μ2 → 0 at the
end. The contributions of the infrared cut-off μ2 in equation (6.4) factorize and are given by

f (μ2) = (μ2)
β2

8π
(
∑N

j=1

∑mj

kj =1 αkj
)2

(μ2)
γ 2

8π

∑N−1
iD=1(

∑N
j=1

∑mj

kj =1 αkj
λ

iD
jj )2

. (6.7)

In the limit μ2 → 0 the non-zero contributions in the partition function (6.4) are those with
mj even that satisfy the selection rule

mj∑
kj =1

αkj
= 0. (6.8)

The selection rule (6.8) together with condition (6.5) also imply that the non-zero contributions
in the partition function (6.4) are those with n even.

For j = j ′ and kj = k̄j , the ε-dependent terms in equation (6.4), corresponding to the
self-energy of the charges in the gas factorize

N∏
j=1

(|ε|2)
2mj

8π
(β2+γ 2 (N−1)

N
) = (|ε|2) 2n

8π
(β2+γ 2 (N−1)

N
), (6.9)

and can be removed by the ‘fugacity’ renormalization

z = m′
o

2
(|ε|2) 1

8π
(β2+γ 2 (N−1)

N
). (6.10)

The partition function corresponds to a ‘multi-gas’ expansion and is given by

Z = 1

Zo

∞∑
n=0

z2n
∑

2m1,2m2,...,2mN

δ2n,2m1+···+2mN

2m1!2m2! · · · 2mN !

⎛⎝ N∏
j=1

∫ 2mj∏
kj =1

d2zkj

⎞⎠
×
∑

{αkj
}2mj

exp

⎧⎨⎩ 1

8π

(
β2 +

γ 2(N − 1)

N

) N∑
j=1

2mj∑
kj �=k̄j

αkj
αk̄j

ln
(|zkj

− zk̄j
|2 + |ε|2)

⎫⎬⎭
× exp

⎧⎨⎩ 1

8π

(
β2 − γ 2

N

) N∑
j �=j ′

2mj∑
kj =1

2mj ′∑
k̄j ′=1

αkj
αk̄j ′ ln

(|zkj
− zk̄j ′ |2 + |ε|2)

⎫⎬⎭ . (6.11)
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The first exponential in (6.11) corresponds to the interaction energy between the charges in
the gas associated with the same Fermi field species. The second exponential in (6.11) is due
to the interaction energy between the charges in the gas associated with different Fermi field
species. For g = 0 (β2 = 4π/N, γ 2 = 4π ) this term disappears and the partition function
factorizes into a product of N partition functions describing the statistical mechanical system
of N independent free massive Fermi field theories

Z = 1

Zo

∞∑
n=0

z2n
∑

2m1,2m2,...,2mN

δ2n,2m1+···+2mN

2m1!2m2! · · · 2mN !

N∏
j=1

Z(2mj ), (6.12)

where

Z(2mj ) =
∫ 2mj∏

kj =1

d2zkj

∑
{αkj

}2mj

exp

⎧⎨⎩1

2

2mj∑
kj �=k̄j

αkj
αk̄j

ln
(|zkj

− zk̄j
|2 + |ε|2)

⎫⎬⎭ . (6.13)

6.2. Equation of state

Following the standard procedure [13, 21], in order to obtain the equation of state of the
statistical mechanical system described by the partition function (6.11), we shall consider the
system confined in a finite volume V = πR2. The thermodynamical limit is performed at
the end of all calculations. In order to extract the volume dependence in the partition function,
we shall make the change of variables zkj

→ ẑkj
= zkj

/R. Using the selection rule (6.8) and
the constraint (6.5), the partition function (6.11) can be written as

Z = 1

Zo

∞∑
n=0

z2n

(
V
π

)2n
[
1− 1

8π

(
β2+γ 2 (N−1)

N

)]

×
∑

2m1,2m2,...,2mN

δ2n,2m1+···+2mN

2m1!2m2! · · · 2mN !

⎛⎝ N∏
j=1

∫
|ẑk |<1

2mj∏
kj =1

d2ẑkj

⎞⎠
×
∑

{αkj
}2mj

exp

⎧⎨⎩ 1

8π

(
β2 +

γ 2(N − 1)

N

) N∑
j=1

2mj∑
kj �=k̄j

αkj
αk̄j

ln
(|ẑkj

− ẑk̄j
|2 + |ε̂|2)

⎫⎬⎭
× exp

⎧⎨⎩ 1

8π

(
β2 − γ 2

N

) N∑
j �=j ′

2mj∑
kj =1

2mj ′∑
k̄j ′=1

αkj
αk̄j ′ ln

(|ẑkj
− ẑk̄j ′ |2 + |ε̂|2)

⎫⎬⎭ . (6.14)

Introducing the potential

� = −KT lnZ, (6.15)

the pressure is given by

P = −
(

∂�

∂Z

)
= KT

1

Z

(
∂Z
∂V

)
. (6.16)

The variation of (6.14) with respect to the volume leads to the following equation of state:

PV =
(

1 − D

2

)
〈N 〉KT, (6.17)
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where D is the scale dimension of the mass operator (3.49) and 〈N 〉 is the expected number
of particles,

〈N 〉 = 1

Z

∞∑
n=0

z2n(2n)

(
V
π

)2n[1− 1
8π

(β2+γ 2 (N−1)

N
)]

×
∑

2m1,2m2,...,2mN

δ2n,2m1+···+2mN

2m1!2m2! · · · 2mN !

⎛⎝ N∏
j=1

∫
|zk |<1

2mj∏
kj =1

d2ẑkj

⎞⎠
×
∑

{αkj
}2mj

exp

⎧⎨⎩ 1

8π

(
β2 +

γ 2(N − 1)

N

) N∑
j=1

2mj∑
kj �=k̄j

αkj
αk̄j

ln
(|ẑkj

− ẑk̄j
|2 + |ε̂|2)

⎫⎬⎭
× exp

⎧⎨⎩ 1

8π

(
β2 − γ 2

N

) N∑
j �=j ′

2mj∑
kj =1

2mj ′∑
k̄j ′=1

αkj
αk̄j ′ ln

(|ẑkj
− ẑk̄j ′ |2 + |ε̂|2)

⎫⎬⎭ . (6.18)

The equation of state (6.17) exhibits a Kosterlitz–Thoulesss phase transition [22, 27] at the
critical value

Dc = 2, (6.19)

that is,

β2 +
γ 2(N − 1)

N
= 8π. (6.20)

The equation of state (6.17) describes the behavior of the statistical mechanical system defined
by the partition function (6.14), which is associated with the bosonic theory defined by the
Lagrangian (3.48). However, one may ensure that the Lagrangian (3.48) corresponds to the
bosonized version of the fermionic model only for a mass operator with scale dimension
D < 2, such that for short distances the mass perturbation becomes increasingly negligible.
In the critical region of the equation of state, the inequality (3.49) is violated so that for short
distances the model starts to be driven away from the fixed point and thus cannot be considered
as a perturbation in the scale invariant massless fermionic model. The statistical mechanical
system associated with the effective bosonized theory describing the original fermionic model
is restricted to the region D < 2 and the critical point for the K–T phase transition lies outside
of the domain where the fermion–boson mapping can be established.

For N = 2 the equation of state (6.17) reduces to that obtained in [13]. For g = 0 the
equation of state (6.17) is given by

PV = 1
2 〈N 〉KT, (6.21)

and corresponds to the equation of state of the standard Coulomb gas [27].

7. Concluding remarks

Using the Abelian reduction of the WZW theory, we have considered the functional integral
bosonization of the two-dimensional fermion model with Thirring interaction among different
species. In the same way as in the operator approach developed in [17], in the present functional
integral approach we only need to know the free-field fermion–boson correspondences in order
to perform the bosonization of the interacting theory and the operator solution for the quantum
equations of motion. The use of auxiliary vector fields introduces redundant bosonic degrees
of freedom which are not intrinsic fields describing the physical content of the model. The
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resulting bosonized model is defined in a positive-metric Hilbert space and corresponds to
N coupled sine-Gordon fields {�̃, �̃iD }. The operator solution for the quantum equations of
motion is constructed from the functional integral approach and is given in terms of generalized
Mandelstam soliton operators. The fermion–boson correspondences obtained by Halpern [17]
for the U(1) current–current interaction are generalized to the Thirring interaction between
different fermion species. The extension of the model to local gauge symmetry was discussed
and the U(1) charge screening mechanism of the Thirring field is presented. In this case
the gauge non-invariant indefinite metric Hilbert space exhibits two free massless scalar
excitations, one coming from the use of auxiliary vector fields and the other from the gauge
structure of the model, each one of them playing a distinct role in the definition of the physical
content of the model. This generalizes the presentation of [1, 13, 19].

The statistical mechanical description of the effective bosonized theory was performed
by obtaining the corresponding partition function and the equation of state. As in the standard
Thirring model, the equation of state exhibits a K–T phase transition at the critical dimension
Dc = 2.

We conclude that in order to exert control on the effect of the redundant Bose fields,
introduced by the use of auxiliary vector fields, and to obtain the fermion–boson mapping
in the Hilbert space of states, the functional integral bosonization must be performed on the
generating functional—and not on the partition function. Although the massless Bose fields
give no physical contributions to the Wightman functions, the most appropriate way to treat
the problem is to perform the functional integral bosonization of the generating functional of
the theory, from which one constructs the Hilbert space of the model, without disregarding the
role played by the ‘decoupled’ massless Bose fields in the intermediary steps. In appendix D,
we present our criticism with respect to the conclusions of [3], in which the fermion–boson
mapping is established on the partition function level.
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Appendix A. Massless model

For massless fermions (mo = 0) the model is a scale invariant theory with anomalous scale
dimension, described by N free massless fields �̃, �̃iD . In order to compute the general
Wightman functions for the massless Fermi fields, let us introduce the light-cone variables

u = x0 + x1, v = x0 − x1, (A.1)

such that the pseudo-scalar and scalar fields are defined in terms of right- and left-mover
components by

�̃(x) = �(v) − �(u), �(x) = �(v) + �(u). (A.2)

In this case, the operator solution (4.10) is written in terms of the free massless fields as
follows:

�(x) =
(

μ2d

2π

) 1
2

: ei( 2π
Nβ

+γ 5 β

2 )�(v)
: : ei( 2π

Nβ
−γ 5 β

2 )�(u)
:, (A.3)

�̂j (x) = : ei( 2π
γ

+γ 5 γ

2 )
∑

iD
λ

iD
jj �iD

(v)
: : ei( 2π

γ
−γ 5 γ

2 )
∑

iD
λ

iD
jj �iD

(u)
:. (A.4)
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The general Wightman functions for the same spinor components are given by

〈0|ψj(x1) · · · ψj(xn)ψ
∗
j (x̄1) · · · ψ∗

j (x̄n)|0〉

=
(

1

2π

)n n∏
i<k

([i(vi − vk)]
d+ 1

2 γ 5
[i(ui − uk)]

d− 1
2 γ 5

)

×
n∏

i<k

([i(v̄i − v̄k)]
d+ 1

2 γ 5
[i(ūi − ūk)]

d− 1
2 γ 5

)

×
n∏
i,k

([i(vi − v̄k)]
−d− 1

2 γ 5
[i(ui − ūk)]

−d+ 1
2 γ 5

), (A.5)

where d is the scale dimension of the Fermi field operator

d =
(

β2

16π
+

π

N2β2

)
+

(N − 1)

N

(
γ 2

16π
+

π

γ 2

)
. (A.6)

For g = 0, d = 1/2, we recover from (A.5) the Wightman functions for N free massless Fermi
fields.

Appendix B. Bosonized Lagrangian of the gauge model

Let us define

D±(Bj ,A) = (i∂± + g2Bj
± + eA±

)
, (B.1)

and introducing in the functional integral the 2N identities

1 =
∫

DUjDUg[det D+(UjUg)]δ
(
g2Bj

+ + eA+ − U−1
j U−1

g i∂+UjUg

)
, (B.2)

1 =
∫

DVjDVg[det D−(VjVg)]δ
(
g2Bj

− + eA− − VjVgi∂−V −1
j V −1

g

)
, (B.3)

the change of variables from (Bj
±,A±) to (UjUg, VjVg) is performed by integration over

the field components Bj
±,A±. Performing the fermion chiral rotations (5.5), taking into

account the corresponding change in the integration measure [9] and using a gauge invariant
regularization, we obtain⎛⎝∏

j

Dψ̄jDψj

⎞⎠⎛⎝∏
j

DBj
±

⎞⎠DA±

=
⎛⎝∏

j

Dψ̄
(0)
j Dψ

(0)
j

⎞⎠⎛⎝∏
j

DUjDVj

⎞⎠DUgDVg

∏
j

Jj [UjVjUgVg], (B.4)

with

Jj [UjVjUgVg] = e−i[Uj Vj UgVg ] = e−i[Gj Gg], (B.5)

where the fields Gj and Gg are defined by

Gj = UjVj , Gg = UgVg. (B.6)

Using the decomposition (3.22) for the auxiliary vector field Bμ and decomposing the gauge
field as

Aμ = 1

e
(εμν∂νφ̃g + ∂μζg), (B.7)
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the Bose fields (Uj , Vj , Ug, Vg) are given by

Uj = e−i(φ̃j +ζj ), Vj = e−i(φ̃j −ζj ), (B.8)

Ug = e−i(φ̃g+ζg), Vg = e−i(φ̃g−ζg). (B.9)

The Maxwell Lagrangian is given by

LM = 1

8e2

{
∂+
(
Ggi∂−G−1

g

)}2 = 1

2e2
(�φ̃g)

2. (B.10)

Using the decompositions (2.7)–(3.32), the bosonized effective Lagrangian can be written as

L = 1

2
(∂μϕ̃)2 +

1

2

∑
iD

(
∂μϕ̃iD

)2
+

π

2Ne2
(�φ̃′

g)
2 − 1

2
(∂μφ̃′

g)
2 +

1

2
(∂μφ̃′)2 +

α√
π

φ̃′�φ̃′
g

− 1

2

∑
iD

(
∂μφ̃′

iD

)2 − 1

2
(∂μζ ′)2 +

1

2

∑
iD

(
∂μζ ′

iD

)2 − m′
o

N∑
j=1

cos

{
2

√
π

N
ϕ̃ + 2

√
π

N
φ̃′

g

+
2√
N

g
√

(N − 1)√
1 − g2(N−1)

π

φ̃′ +
N−1∑
iD=1

λ
iD
jj

(
2
√

πϕ̃iD + 2
g√

1 + g2

π

φ̃′
iD

)}
, (B.11)

where

α2 = g2(N − 1)

1 − g2(N−1)

π

, (B.12)

the fields φ̃′, φ̃′
iD

, ζ ′ and ζ ′
iD

are defined by (3.35)–(3.38) and

φ̃′
g =

√
N

π
φ̃g. (B.13)

The field ζg is a pure gauge excitation and does not appear in the bosonized gauge invariant
Lagrangian. Let us consider the following term in the Lagrangian (B.11):

L(φ̃′
g, φ̃

′) = π

2Ne2
(�φ̃′

g)
2 − 1

2
(∂μφ̃′

g)
2 +

1

2
(∂μφ̃′)2 +

α√
π

φ̃′�φ̃′
g. (B.14)

The fields φ̃′ and φ̃′
g can be decoupled by introducing the new field

ϑ̃ = φ̃′ − α√
π

φ̃′
g, (B.15)

and we obtain

L(φ̃′
g, φ̃

′) = L(ϑ̃, φ̃′′
g) = 1

2
(∂μϑ̃)2 +

1

2m2
(�φ̃′′

g)
2 − 1

2
(∂μφ̃′′

g)
2, (B.16)

where we have defined

φ̃′′
g =

(
1 − g2(N − 1)

π

)− 1
2

φ̃′
g, (B.17)

and the mass parameter m is given by

m2 = e2N

π

(
1 − g2(N − 1)

π

)−1

. (B.18)

For g2 = 0 we obtain the mass of the gauge field of QED2 with N Fermi fields [19].
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In order to ‘dequartize’ the Lagrangian for the field φ̃′′
g in (B.16), we shall consider the

following functional integral identity,∫
Dφ̃′′

gei
∫

d2z{ 1
2m2 (�φ̃′′

g)
2+ 1

2 φ̃′′
g�φ̃′′

g}

=
∫

D�̃Dφ̃′′
g ei

∫
d2z{− 1

2 �̃2+ 1
m

(��̃)φ̃′′
g+ 1

2 φ̃′′
g�φ̃′′

g}

=
∫

D�̃ Dφ̃′′
g ei

∫
d2z{− 1

2 m2�̃2+(��̃)φ̃′′
g+ 1

2 φ̃′′
g�φ̃′′

g}

=
∫

D�̃ Dη̃ ei
∫

d2z{ 1
2 η̃�η̃− 1

2 (�̃��̃+m2�̃2)}, (B.19)

where we used

�̃ = 1

m
�̃, (B.20)

and the decoupling of the fields �̃ and φ̃′′
g is performed by defining the new field

η̃ = φ̃′′
g + �̃. (B.21)

The bosonized Lagrangian is then given by

L = 1

2
(∂μϕ̃)2 +

1

2
(∂μϑ̃)2 +

1

2

∑
iD

(∂μϕ̃iD )2 − 1

2

∑
iD

(∂μφ̃′
iD

)2 − 1

2
(∂μζ ′)2 +

1

2

∑
iD

(
∂μζ ′

iD

)2
− 1

2
(∂μη̃)2 +

1

2
(∂μ�̃)2 − 1

2
m2�̃2 − m′

o

N∑
j=1

cos

{
2

√
π

N
ϕ̃ + 2

α√
N

ϑ̃

+
1√
N

√
4π

1 − g2(N−1)

π

(�̃ + η̃) +
N−1∑
iD=1

λ
iD
jj

(
2
√

πϕ̃iD + 2
g√

1 + g2

π

φ̃′
iD

)}
,

(B.22)

In order to obtain the bosonized theory in terms of the true bosonic degrees of freedom, let us
introduce the canonical transformations

β�̃ = 2

√
π

N
ϕ̃ + 2

α√
N

ϑ̃, (B.23)

βξ̃ = 2
α√
N

ϕ̃ − 2

√
π

N
ϑ̃, (B.24)

with

β2 = 4π

N

1

1 − g2

π
(N − 1)

, (B.25)

and

γ �̃iD = 2
√

πϕ̃iD + 2
g√

1 + g2

π

φ̃′
iD

, (B.26)

γ ξ̃iD = 2
g√

1 + g2

π

ϕ̃iD + 2
√

πφ̃′
iD

, (B.27)
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with

γ 2 = 4π

1 + g2

π

. (B.28)

In this way we obtain from (B.22) the effective bosonized Lagrangian (5.6).

Appendix C. Perturbative expansion

To begin with, let us define

�j(z)
.= β�(z) + γ

∑
iD

λ
iD
jj�iD (z). (C.1)

Following the standard procedure [13, 21], expanding the exponentials in (6.1) in powers of
m′

o and using a multinomial expansion, we get

exp

⎧⎨⎩−m′
o

N∑
j=1

∫
d2z cos �j(z)

⎫⎬⎭ =
∞∑

n=0

(−m′
o)

n

n!

⎛⎝ N∑
j=1

∫
d2z cos �j(z)

⎞⎠n

=
∞∑

n=0

(−m′
o)

n

n!

∑
m1,m2,...,mN

(n!)δn,m1+···+mN

m1!m2! · · · mN !

N∏
j=1

(∫
d2z cos �j(z)

)mj

=
∞∑

n=0

(−m′
o)

n

n!

∑
m1,m2,...,mN

(n!)δn,m1+···+mN

m1!m2! · · · mN !

N∏
j=1

⎛⎝∫ mj∏
kj =1

d2zkj
cos �j(zkj

)

⎞⎠, (C.2)

where the summation
∑

m1,m2,...,mN
runs over all positive-integer values of mj for which

N∑
j=1

mj = n. (C.3)

In terms of the exponential of �j , the expansion (C.2) can be written as

exp

⎧⎨⎩−m′
o

N∑
j=1

∫
d2z cos �j(z)

⎫⎬⎭ =
∞∑

n=0

(−m′
o)

n

n!

×
∑

m1,m2,...,mN

(n!)δn,m1+···+mN

m1!m2! · · · mN !

N∏
j=1

⎛⎝ 1

2mj

∑
{αkj

}mj

∫ mj∏
kj =1

d2zkj
e

i
∑mj

kj =1 αkj
�j (zkj

)

⎞⎠ ,

(C.4)

where αkj
= ±1 and

∑
{αkj

}mj
runs over all possibilities in the set {α1, . . . , αmj

}. The partition

function is then given by

Z = 1

Zo

∞∑
n=0

(−m′
o)

n

2n(n!)

∑
m1,m2,...,mN

(n!)δn,m1+···+mN

m1!m2! · · · mN !

⎛⎝ N∏
j=1

∫ mj∏
kj =1

d2zkj

∑
{αkj

}mj

⎞⎠
×
∫

D� e−S(0)(�) e
∫

d2zJ (z)�(z)

∫ N−1∏
iD=1

D�iD e−S
(0)
iD

(�iD
)e
∫

d2z
∑

iD
J iD (z)�iD

(z)
, (C.5)
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where

J (z) = iβ
N∑

j=1

(
mj∑

kj =1

αkj
δ(2)(z − zkj

)

)
, (C.6)

J iD (z) = iγ
N∑

j=1

(
mj∑

kj =1

αkj
λ

iD
jj δ

(2)(z − zkj
)

)
. (C.7)

Performing the functional integration over the fields �̃ and �̃iD , we obtain

Z = 1

Zo

∞∑
n=0

(−m′
o)

n

2n

∑
m1,m2,...,mN

δn,m1+···+mN

m1!m2! · · · mN !

⎛⎝ N∏
j=1

∫ mj∏
kj =1

d2zkj

⎞⎠
×
∑

{αkj
}mj

exp

⎧⎨⎩−β2

2

N∑
j=1

N∑
j ′=1

mj∑
kj =1

mj ′∑
k̄j ′=1

αkj
αk̄j ′ Do(zkj

− zk̄j ′ )

⎫⎬⎭
× exp

⎧⎨⎩−γ 2

2

N−1∑
iD=1

N∑
j=1

N∑
j ′=1

mj∑
kj =1

mj ′∑
k̄j ′=1

αkj
αk̄j ′ λ

iD
jjλ

iD
j ′j ′Do(zkj

− zk̄j ′ )

⎫⎬⎭ , (C.8)

where

Do(z) = lim
μ2→0

�(z;μ) = − 1

4π
ln{−μ2(|z|2 + ε2)} (C.9)

is the infrared and ultraviolet regularized massless Green’s function of the two-dimensional
Laplacian operator.

Appendix D. The model with N = 2

In this appendix we shall make some remarks related to the problems of regularization
and the factorization of the partition function. In [3] the bosonic structure of the model
with interaction among two (N = 2) different species of massive Fermi fields has been
discussed within the functional integral framework. The bosonized partition function is
obtained and the main conclusion given in [3] is that ‘for a specific value of the coupling
constant (g2 = 2π/3, β− = 0) one boson field (in our notation �̃−) becomes a free field
with negative metric (a ghost field), while the other (�̃+) is a sine-Gordon field, and the
model becomes equivalent to the ordinary sine-Gordon model of a single boson field’. The
‘equivalence’, as proposed in [3], was stablished between the partition functions and not
between the generating functionals, and thus does not imply the isomorphism between the
corresponding Hilbert spaces of states. Free massless scalar fields decouple in the partition
function, but do not decouple in the generating functional. From our point of view, this
‘equivalence’ is a misleading conclusion, which is a consequence—first—of the factorization
of the partition function and—second—of disregarding the free massless field ζj (the field χj

in the notation of [3]), so it cannot be considered as being an intrinsic property of the model
with N = 2. The use of a regularization prescription that breaks the local gauge invariance
of the fermionic piece of the effective Lagrangian (3.9) leads to the appearance of an effective
coupling constant depending on the regularization parameter. In this case, the model exhibits
distinct physical and ghost ranges. In [13], the bosonic structure of the model with N = 2 was
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analyzed using an arbitrary regularization parameter a, which is related to the regularization
parameter b used in equation (3.17) by

a

2π
= 1

4π
− b

g2
. (D.1)

The model exhibits distinct ranges for the relation between the coupling constant g2 and the
regularization parameter a. In [13] the model was considered for 0 � a < 1 and in the range

0 � g2 <
π

(1 − a)
,

g2a

π
< 1. (D.2)

This is a physical range, which includes the free theory as a limit, the model does not exhibit
sine-Gordon ghost fields, the two physical Bose fields �̃± have positive metric quantization
and the unitarity is not spoiled. The value a = 0 (b = g2/4π ) corresponds to a regularization
that preserves the local gauge invariance of the fermionic piece of the effective Lagrangian
(3.9).7

In order to discuss the conclusion of [3] and to show that the procedure of making
β = 0 is meaningless for a sine-Gordon theory, let us consider the bosonization of the model
with N = 2 and a regularization parameter a > 1. In this case the bosonized Lagrangian
corresponding to (3.33) is given by (φ̃ ≡ φ̃+, φ̃iD ≡ φ̃−, etc)

Leff = 1

2
(∂μϕ̃+)

2 +
1

2
(∂μϕ̃−)2 +

1

2g2

(
1 +

g2

π
(a − 1)

)
(∂μφ̃+)

2

− 1

2g2

(
1 − g2

π
(a − 1)

)
(∂μφ̃−)2 − 1

2

1

g2

(
1 − g2

π
a

)
(∂μζ+)

2

+
1

2g2

(
1 +

g2

π
a

)
(∂μζ−)2 − m′

o cos(
√

2πϕ̃+ +
√

2φ̃+) cos(
√

2πϕ̃− +
√

2φ̃−).

(D.3)

Note that the range for the values of the ‘effective’ coupling constant g2(a − 1) ≶ π in (D.3)
determines the sign of the metric for the field φ̃−. As in the standard Thirring model, we shall
consider the range for which

g2 <
π

(a − 1)
,

g2a

π
< 1. (D.4)

The condiction (D.4) ensures that in this range the metrics for the fields φ̃− and ζ+ in (D.3)
remain fixed. Performing the field scalings and the canonical transformations, similar to
(3.40)–(3.44), the sine-Gordon parameters β± are given by

β2
± = 2π2 ± 2πg2a

π ± g2(a − 1)
. (D.5)

The sine-Gordon parameters given in [3] are obtained from (D.5) by making g2 → g2/2 and
with the regularization parameter a = 3. The value g2a = π , for which in a naive way
β− = 0 and the field φ̃− becomes a ‘would be’ free field (as proposed in [3] at the partition
function level), violates condition (D.4) and the field ζ+ in (D.3) is not a dynamical degree of
freedom. In other words, if one starts at the beginning by considering g2a = π , the Bose field
algebra collapses and the fermion–boson mapping becomes meaningless. In this case, the free
massless fields ζ− and ξ+ give contributions to the fermionic Wightman functions. The mass
operator is now given by

m′
o cos β+�̃+ cos 2

√
π(̃ϕ− + φ̃′

−). (D.6)

7 In this case the ghost range is for g2a > π and g2 > π/(1 − a) [13].
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Due to the opposite metric quantization for the fields ϕ̃− and φ̃′
−, the field combination

(̃ϕ− + φ̃′
−) is a zero norm field and does not contribute to the fermionic Wightman functions.

The resulting Hilbert space contains contributions from the redundant free massless Bose
field algebra, which are not present in the original Fermionic model. This also can be easily
checked in the model with massless fermions for which the exact Wightman functions can be
computed8.
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